Applied Pharmacokinetics: December 2023



Tuesday, December 12th, 2023 from 11:00am ET - 5:00pm ET

Wednesday, December 13th, 2023 from 11:00am ET - 5:00pm ET

Thursday, December 14th, 2023 from 11:00am ET - 5:00pm ET

Registration: $600 per person
Groups of 5 or more: $450 per person

*All presentations must be attended to receive full credit

Course Description

Designed for forensic toxicologists, pathologists, or anyone interested in pharmacokinetics, this 3-day, 15-hour course, covers applied clinical pharmacokinetics in greater depth than the classic introductory presentations. Successfully launched in 2020, this is the fourth offering of the class!

*The course content has been reviewed by the ABFT and ABC and determined to be acceptable for submission to the ABFT and ABC for 15 hours of continuing education credits.

Who Should Register

Students, professionals, and anyone interested in furthering their knowledge of pharmacology and pharmacokinetics.

Group Discounts

If you register 5 or more attendees from your business/organization, you are offered a reduced registration fee of $450.

Course Schedule

The course comes with a comprehensive syllabus and is accompanied by practice questions covered throughout the instruction.

The course provides the attendees with a sound understanding of most major pharmacokinetic parameters and how to calculate them. Intended as a follow-up to the first day of the Forensic Pharmacology course, this class will take the student into the modeling of biological fluid drug concentration as a function of time. The interactive experience will be based on problems, questions, and case-studies, and will require the use of a calculator and graph paper.

Day 1:

After a brief introduction to pharmacokinetics and pharmacodynamics, the basic concepts of one- and two-compartment models will be laid out and related to distributive properties of drugs. Drug partition between plasma and red blood cells using data from Baselt is discussed.

Plasma concentration versus time plots will be explored and a logarithm/exponential primer will be reviewed. The student will be able to calculate a volume of distribution and recognize the differences between first and zero order kinetics. Given a graphic representation or raw data, we will calculate the elimination rate constant and relate it to the drug’s half-life, as well as understand and use the concept of area under the curve (AUC). We will use the modeling to calculate the fraction of a dose remaining in the body at any time.

Day 2:

We will explore the relationships between pharmacokinetic parameters and review the pharmacokinetics of chronic dosing.

The concept of clearance will be applied with an emphasis on hepatic clearance and extraction ratio (ER(h)). Participants will differentiate drugs with high ER(h) versus drugs with low ER(h).

The effect changes in elimination rate constant, in dosing interval, in dose, in clearance or in volume of distribution have on peak and trough concentrations of drugs used chronically will be studied. An accumulation factor will be defined before reaching steady state, and at steady state.

The students will then explore two-compartment modeling and biexponential equations. Calculation and understanding of a and b (slopes/ distribution and elimination rate constants) will allow the class to appreciate potential problems in the estimation of a drug half-life and define 3 different volumes of distribution (the central compartment volume of distribution, the volume of distribution based on the area under the curve, and the volume of distribution at steady state). Knowing the formulae used in a scientific paper will help interpreting the role clearance has on these values.

Day 3:

To finish the course we will discuss non-linear pharmacokinetics and model-independent pharmacokinetic parameters. The goal is to explain the various processes that can result in non-linear pharmacokinetics and describe the relationships between drug concentration, AUC and dose. The students will use the Michaelis-Menten model to predict plasma drug concentrations. Vmax, Km will be calculated and allow prediction of the dose required to achieve a specific steady-state concentration. Total body clearance, formation clearance and mean residence time of a drug will be addressed.

We are looking forward to meeting you online for our annual CFSRE/Uptake Applied Pharmacokinetics!


Click the Enroll button below to register for the Applied Pharmacokinetics Course!

82 seats available.
Price: $600.00
Buy 5 or more for $450.00 each